Chapter 4: Classification

+» Response variable is qualitative
1. Logistic regression
2. Linear discriminant analysis
3. K-nearest neighbors
4, Poisson regression



Overview

+ Use phenotypic of genetic data to classify species or

populations

+» Can default be predicted from credit card balance

and income?
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Logistic Regression

+ When there are two outcomes, like alive (0) or dead (1), we can
predict the probability of either outcome as , p(X)=Pr(Y=1|X).

Probability of Default
00 02 04 06 08 1.0
Probability of Default
00 02 04 06 08 1.0
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The blue line on the left is a straight line and on the right a logistic equation



Logistic Regression

eﬁO +ﬁ1X 1

oo X — and 1 - X —
p(X) TR’ p(X) T
+ The odds, XL = gBo+BaX
" 1-p(X)
. _ : p(X) \ _
+ Log-odds, or logit, log (1_p(X)) = o + 1 X

+» This model can be expanded to include multiple predictors
|Oglt=,30 + ﬁ]_Xl + + ﬁpo



Logistic Regression (cont.)

+ These coefficients will be estimated by maximum likelihood

=« Likelihood function =1(By, 1) = I1;.y,=1 P(xi) I1i.y,=0(1 — (x;)),wWhich is
the probability of observing the sample. B’s are chosen to maximize
the likelihood function. This can be done taking derivatives as with
the least squares estimates or if there are constraints on the
parameter values a technique like Lagrange multipliers can be
used.




Logistic Regression: Example

Drosophila larvae are allowed to feed on
excess yeast past for various periods.

At each sample time larvae are removed and placed
in vials with agar only (no food).

The number of adult survivors at each time sample
are recorded.
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Logistic Regression: Example

selection replicate age alive dead
utb 1 12 0 30
utb 1 24 0 30
utb 1 30 0 30
utb 1 36 0 30
utb 1 42 2 28
utb 1 48 2 28
utb 1 54 9 21
utb 1 60 25 5
utb 1 66 25 5
utb 1 72 24 6
etc

There is a second selection treatment “tb” a control for
“utb” -> larvae raised in urea food.

This data file (survival.data) is read into R,
viability.data<- read.table("survival.data ",header=TRUE)



Logistic Regression: Example

A linear model will not do well with these data so a quadratic model is used
#So let’s also try the analysis on hours 42 and above

viability.data2<- viability.data[viability.data$age>36, ]

viability.data3<- cbind(viability.dataZ2,viability.data2Sage”2)

dead.data2<- as.matrix(viability.data2[,4:5])

names (viability.data3)<- c("selection", "replicate", "age", "alive", "dead","age2")

viability.glm3<- glm(dead.dataZ2~ age*selectiontageZ*selection,data=viability.datas3,
family=binomial)



Logistic Regression: Example

> summary (viability.glm3)

Call:
glm(formula = dead.data?2 ~ age * selection + ageZ2 * selection,
family = binomial, data = viability.data3) I}(t)
log| ———=—| =By + 8;ap + (B1+8;a)t + (B, +8;a,)t>
Deviance Residuals: Y 1_pi(t) '80 L0 ('81 l 1) ('82 l 2)
Min 10 Median 39 Max where tb (j=1) and utb (j=2) and §,=0 if i=1
-3.3493 -1.5558 -0.1557 1.7634 4.3268 .
1 otherwise.
Coefficients:

Estimate Std. Error z value Pr(>|z])

(Intercept) B, -1.919e+01 1.505e+00 -12.754 < 2e-16 *xx

age B, 5.673e-01 4.663e-02 12.166 < 2e-16 xxx

selectionutb a, 3.969e+00 2.160e+00 1.838 0.06613 To see all the side results that you
age2 B, | -3.800e-03 3.452e-04 -11.009 < 2e-16 *xx can use write,

age:selectionutb o; -1.514e-01 ©6.695e-02 -2.261 0.02373 * . . .

selectionutb:age? a, 1.284e-03 4.983e-04  2.577 0.00997 ** attributes(viability.glm3)

- This may reveal stuff not

Signif. codes: 0 “***’ (0,001 ‘**’/ 0.01 ‘*’/ 0.05 ‘.’ 0.1 ' 1

documented in the help page.

(Dispersion parameter for binomial family taken to be 1)

Null deviance:
Residual deviance:
AIC: 635.29

1234.99
365.04

on 89
on 84

degrees of freedom
degrees of freedom

Number of Fisher Scoring iterations: 5



Logistic Regression: Example

+» An important question here is if the predicted survival probabilities
in the TB and UTB populations are significantly different.

+ Use predictions rather than individual observations at each time
interval since these are based on all the data.

+ The R predict function can generate standard errors for the logit
function but won't generate tests between different predictions.

+ However, we can generate random samples of the regression

parameters, make predictions for TB and UTB and save the
differences.



Logistic Regression: Example

library (mvtnorm)

logit2.ftn<- function(t,al0,al,aZ2) {
y<- alOtal*t+az2*t"2
exp (y) / (1+exp (y))

cov.b<- summary (viability.glm3) $cov.unscaled
mean.b<- coefficients(viability.glm3)
age.range<- c( 42, 48, 54, 60, 66, 72,78,84,90)
sim.num<-5000
conf.band<- sapply(l:sim.num, function (x) {
#fgenerate random parameters and make sure they are all >0
b.x<- rmvnorm(l,mean= mean.b, sigma=cov.Db)
tbh.x<- c(b.x[1], b.x[2], Db. X[ 1)
utb.x<- c(b.x[1]+ b.x[3], X[2]
logit2.ftn (age.range, tb x[ ]
utb.x[2],utb.x[3]

+ b.x b.x[4]+ b.x[06])

)

1 [
2],tb.x[3])- logit2.ftn(age.range,utb.x]|

11,



Logistic Regression: Example
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Multinomial Logistic Regression

+~ If there are now k>2 categories we can extend the logistic
equation method in two ways.

+~ The first requires that you pick one category as the baseline and
then estimate coefficients for the remaining k-1 categories. The
complication is that all odds ratios are defined relative to the
baseline category.

+ The softmax coding treats all categories symmetrically and is used
in other statistical learning methods.



Multinomial Logistic Regression, softmax coding

+ Assume we have K categories, then the Pr(Y=k|X=X) is
e(ﬁk0+ﬁk1x1 ++ BrpXp )

{(_1 e(.Bi0+Bi1x1 +”'+.Bipxp)

+ Now the odds ratio between the kth and jth class is,

Pr(Y = k|X = x)
09 (P:(Y =j|X = jcc)> = (Bro = Bjo) + (B — Bjn)xat- - +(Bip — Bjp)%p

+ In R use the nnet package, and the multinom function.




Linear Discriminant Analysis

+~ LDA will outperform logistic regression when, (i) classes are well
separated and (ii) n is small and the distribution of the predictors is

approximately normal.
+ LDA can also handle multiple response classes

+ Three ways to find LDA predictors, (i) Bayes classifiers, (ii) find a
scaling that maximizes the mean differences between response
classes, and (iii) use the Mahalonobis distance.



Bayes Theorem

+ Suppose we have K response classes, K>2. &, is the prior
distribution of class k. May be uniform, or estimated from sample.

+ Let f,(X) be the probability density or mass function of X or
Pr(X=x|Y=k)
+ From Bayes Theorem we have, Pr(Y=k|X=x)=p,(x) = Zf"’;";xzx)
i=1 "t
+~ If we assume the predictors have a normal distribution then we can
get some specific results, assuming all f,(X) have a common

variance (c?) and each has mean, p,.

2
» Assign observation to class-k if, xﬁ’; — 2“0"2 + log(m,,) is largest.



Maximize distance between distributions

+ Suppose X; ~ MVN(pu,,2) and X, ~ MVN(u,,X).

» The sample means, X; and X, have sample variances, S/N, and
S/N,. We will do a linear transformation (e.g aX;) of X; and X, to
separate their distributions.

» Find a'=(ay, ...,a@,) such that t*(a) is maximized, where
- 12

al (X, — X
tz(a)= (1 1 2)1
AT
aSa\/N1+N2_

+» To do this maximization use Lagrangian multipliers with the
solution that a= S~ 1(X; — X,)

+» Then for a set of features X, classify according to whether a™X is
closer a’X; or a’'X,.



Mahalonobis distance

+ Another way to derive the linear discriminant function.

+ Find the Mahalonobis distance between an unknown (X ) and the

mean of every group and assign X to the group X is closest to, e.g.
find the min over all ,

D/ =X —-X)TS (X -X;)



Linear Discriminant Analysis: example
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Linear Discriminant Analysis: example

generation age earlyfec
4 0.550 -100.050
4 0.550 -42.050
4 -0.450 -50.050
4 1.550 -86.050
4 -0.450 -69.050
4 1.550 -77.050
4 0.550 -55.050
4 1.550 -72.050
4 0.550 -53.050
4 0.550 -46.050
4 -0.450 -50.050
4 -0.450 30.950
4 1.550 -51.050
4 -0.450 -25.050
4 0.550 -33.050
4 0.550 -58.050
4 1.550 -86.050

Etc

Age = age at first reproduction;

resistance.

All values are shown relative to

peakfec
-100.450
-20.450
-23.450
-52.450
-79.450
-41.450
-46.450
-54.450
-36.450
-46.450
-83.450
-5.450
-4.450
-44.450
-18.450
-28.450
-114.450

rf
-10.500
-10.500
1.500
-4.500
-10.500
-10.500
-10.500
1.500
-4.500
1.500
7.500
1.500
-16.500
-4.500
-16.500
1.500
-16.500

earlyfec= early fecundity;
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rf= female starvation



Linear Discriminant Analysis: example

> port.lda <- lda(na.omit (port),port.name)
> port.lda

Call:

lda (na.omit (port), port.name)

Prior probabilities of groups:
b f
0.5352697 0.4647303

Group means:

age earlyfec peakfec rf
b 2.0833152 -73.04842 -51.57066 -0.1002842
f 0.3036518 -45.21231 -34.16832 -0.3851994

Coefficients of linear discriminants:
LD1

age -0.4087049732

earlyfec 0.0214200071

peakfec -0.0088328690

rf -0.0005101683

With no formula in Ida, the first entry are
the features and the second vector are
the groupings or class membership

for each observation (b=begin, f=final).

To assess the importance of each factor
the variable should be scaled first, e.q.
divide each observation by the standard
error of that variable , e.g. port$age<-

port$age/sd(port$age).



Linear Discriminant Analysis: example

+» The discriminant function has given
an objective measure of how the
combined phenotypes change from
the start to the end of the period of
adaptation. Perhaps this is a way of
summarizing the increase in fitness.

- While there is no evolutionary theory
that arrives at the Ida weightings it is
clear that natural selection weights
fitness components differently.
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LDA Error Analysis

+» A confusion matrix shows the true vs. the predicted status of
samples in an LDA analysis

+» Assume the user is interested in predicting only one of the two
states (default).

+ % of true defaulters identified= 81/333=24% (sensitivity, power,
1-type II error)

+» 9% of true non-defaulters identified= 9644/9667=99.8%

(specificity, 1-type I error) True default status
No Yes | Total

Predicted No 9,644 252 | 9,896
default status  Yes 23 81 104

Total | 9,667 333 | 10,000




Error Rate
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LDA Error Analysis

+ How to improve the prediction of defaulters?

+~ Lower your criteria!
+» Standard is for two choices, Pr(default=yes|X=x)>0.5. Lower this

cutoff to say 0.2.

+ Now the sensitivity has increased to 195/333= 41%
+~ But specificity has decreased to 9432/9667= 97.6%

True default status
No Yes | Total

T Predicted
il default status

No
Yes

9,432 138 | 9,570
235 195 430

Total

9,667 333 | 10,000

Threshold



ROC Curve

+ ROC stands for receiver operating
characteristics.

+ This is a plot of the true positive rate
(sensitivity) vs false positive rate (=#of
incorrect predicted defaults/total non-
defaults)

+~ Ideally you would like the true positive
rate to be very high at very low false
positive rates. Thus, the best methods
would have an area under the curve
(AUC) close to 1.0. Just guessing should
get an AUC of 0.5.
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Statistical Nomenclature about errors

True class
— or Null + or Non-null Total
Predicted — or Null True Neg. (TN) | False Neg. (FN) N~
class + or Non-null | False Pos. (FP) | True Pos. (TP) P~
Total N P

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a

population.
Name Definition Synonyims
False Pos. rate FP/N | Type I error, 1—Specificity
True Pos. rate TP/P | 1—Type II error, power, sensitivity, recall
Pos. Pred. value TP/P* | Precision, 1—false discovery proportion
Neg. Pred. value TN/N*

TABLE 4.7. Important measures for classification and diagnostic testing,
derived from quantities in Table 4.6.



Quadratic Discriminant Analysis

+» With this type of analysis we allow the variance-covariance matrix
of each class to be different.

+~ This will reduce the bias of the LDA predictor but increase the
variance due to the great increase in the number of parameters
that must be estimated.

+ The Bayesian classifier assuming normally distributed predictor

variables yields, §; = —%(x — )T (e — ) — %longkl + logm,



Quadratic Discriminant Analysis

L R L b s e e M e e s e et pa s o e >

FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with 31 = Xa. The
shading indicates the QDA decision rule. Since the Bayes decision boundary ts
linear, it is more accurately approximated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that 31 # Xo. Since the Bayes decision
boundary is non-linear, it is more accurately approrimated by QDA than by LDA.



Comparing Methods

+ LDA and logistic regression produce linear decision boundaries but
estimate model parameters differently.

+~ If observations are truly normal then LDA may outperform logistic
regression. However, if this the distribution is not normal logistic
regression may be better.

+ KNN is non-parametric so it should do well when the decision
boundary is non-linear. But you can’t weight the importance of the
predictor variables.

+ QDA may be viewed as a compromise between LDA, logistic
regression and KNN.



Linear Simulations (p=2)
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Scenario 1: uncorrelated predictors from a normal distribution, common covariance
Scenario 2: Same as 1 except predictors have a correlation of -0.5

Scenario 3: Samples drawn from a t-distribution, now logistic regression does better
KNN-CV, cross-validation with the training set to help choose neighborhood size.



Non-linear Simulations (p=2)
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Scenario 4: class 1 predictors normal distribution with correlation 0.5, second class predictors
normal distribution with a correlation of -0.5. Now QDA does best.

Scenario 5: Observation are from a normal distribution with uncorrelated predictors. However,
the response is generated from logistic equation with terms X2, X%, and X; X X,. This generates
a quadratic decision boundary.

Scenario 6: Same as 5 except an even more complicated non-linear function.



Poisson Regression

+» Suppose the response variable you want to predict is a non-
negative integer, and its variance increases with the mean value.

+ The increasing variance violates the assumptions of linear
regression but also violates the binomial/multinomial assumptions
of logistic regression.

+ These response variables may have a Poisson distribution where,
e M)k
k!
+ The mean and the variance of the Poisson distribution is A.

+ Example: bikeshare data in the textbook.

Pr(Y =k) = fork=0,1,2,..



Poisson Regression

+» Rather than model the response variables the mean, %, is modeled
eg. MXy, Xy, oy X5).

= The linear model is, log(AM( Xy, X5, ..., X},)) = Bo + BoX1 + - + BpX,Which
implies that, L(X;, X,, ..., X,)=ePotFoXi++fpXp

+ These regression coefficients will be estimated using maximum

likelihood as was done with logistic regression.

+ The likelihood of the observations, (v,,X;), (V5,X5),..,(V,,X,) iS

n

1—[ e XA (x;)V
i

=1




Generalized Linear Models

+ The R glm function has several options,
glm (dead.data2~

age*selectiontage’l2*selection,data=viability.data3,
family=binomial)

. family has several options:
family=gaussian -> linear regression
family= binomial -> logistic regression
family=poisson -> Poisson regression
other options -> Gamma, inverse.gaussian, quasi, quasibinomial,
quasipoisson




Comments on the Quasi-Binomial Distribution

» Binomial: g(x)=(7;) p*(1—p)"™*
Quasi-binomial: g(x)=(7;) p(p + x0)* " 1(1 —p — xp)"*

+ The extra parameter ¢ can inflate (or deflate) the variance relative
to the binomial distribution (¢ = 0).

+ A population contaminated with individuals that show two (or
more) different binomial probabilities will have a variance greater
than the binomial.

+ Example: niche overlap measures for two species contaminated
with genotypic variation.
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